Diffing! (In Java) A Refactoring To Functional
Case Study

Manuel Paccagnella
Lambda Land, manuel.paccagnella@gmail.com

Version 1, 27 December 2015

Contents
1 Abstract
2 Context

3 First refactoring: DRY!

3.1 Summary e e

4 Second refactoring: Purity!
4.1 Pure functions
4.1.1 Predicateso
4.2 Higher-order functions

4.2.1 filter e

4.3 Maybe/Option
4.4 Unit e
4.5 Inpractice. oL

4.6 SUMMATY« oot e e e e

5 Third refactoring: SRP!

5.1 Summary

6 Fourth Refactoring: Type classes!

6.1 Summary

10

11
13

13

http://lambda-land.com/
mailto:manuel.paccagnella@gmail.com

7 Conclusions 18

8 Changelog 19

8.1 Version 1 (27 December 2015) 19
9 License 19
1 Abstract

This document describes an incremental refactoring of a piece of Java 8 code
from imperative to functional style. The main goal of this article is to give to the
reader a glipse on the principles and techniques behind functional programming
(FP), not to teach Java or a particular FP library for this language. So, the
reader is expected to read this article using API references and other supporting
material to fill-in the details.

2 Context

The code presented in this article is made-up, although I've seen code like this
in the wild. You can find it on GitHub and follow along.

Suppose we have a social platform for book reviews a-la GoodReads. We want
to add a feature that tracks changes on a review, field by field. Our data model
is this:

data Review = Review String Username LocalDateTime Rating String
data Difference = Difference String String String

This notation allows to concisely define new data types. In particular
with:

data Difference = Difference String String String

We define a new type called Difference, whose values can be cre-
ated/expressed using the data constructor with the same name which
requires three arguments, all of them of type String. In other words,
we have defined a data type called Difference which contains three
values of type String.

In this domain they are:

1. Description of the field
2. Human-readable String representation of the old value
3. Human-readable String representation of the new value

An alternative formulation would be:

https://github.com/manuelp/diffing-refactoring

data Difference = Difference {description :: String,
oldValue :: String,
newValue :: String}

Here is our starting point, the original Java implementation:

public class Diff {
public static List<Difference> diff(Review x, Review y) {
if (x == null || y == null) throw new IllegalArgumentException(
"Reviews shouldn't be null!");

List<Difference> changes = new ArrayList<>();
if (!0Objects.equals(x.getTitle(), y.getTitle())) changes.add(
difference("Title", Utils.formatValue(x.getTitle()),
Utils.formatValue(y.getTitle(D)));
if (!Objects.equals(x.getTitle(), y.getTitle())) changes.add(
difference("Username", Utils.formatValue(x.getUsername()),
Utils.formatValue(y.getUsername())));
if (!Objects.equals(x.getTitle(), y.getTitle())) changes.add(
difference("Updated on", Utils.formatValue(x.getUpdated()),
Utils.formatValue(y.getUpdated())));
if (!Objects.equals(x.getTitle(), y.getTitle())) changes.add(
difference("Rating", Utils.formatValue(x.getRating()),
Utils.formatValue(y.getRating())));
if (!Objects.equals(x.getTitle(), y.getTitle())) changes.add(
difference("Text", Utils.formatValue(x.getText()),
Utils.formatValue(y.getText())));
return changes;

3 First refactoring: DRY!

The first thing we notice is that there are a lot of repetitions there, plus several
copy&paste-induced errors (we always compare the review title for every field,
which is incorrect). This code is extremely repetitive, there are basically no
abstractions, and is very imperative.

The very first thing we should do is removing duplications by creating an ab-
straction. In other words, we need to apply the DRY principle: when we found
ourselves to write the same code structure more than once, it’s time to create
an abstraction and use it to avoid repetitions. Often, this means creating a
method instead of copy-pasting.

Let’s extract a method that encapsulates the Difference values creation logic:

private static <T> void compareReviewField(String description, T oldValue,
T newValue,

http://en.wikipedia.org/wiki/Don%27t_repeat_yourself
http://manuelp.herokuapp.com/posts/5

List<Difference> changes) {
if (!'0Objects.equals(oldValue, newValue)) changes.add(
difference(description, Utils.formatValue(oldValue),
Utils.formatValue(newValue)));

This way the main method becomes more concise, readable and maintainable:

public static List<Difference> diff(Review x, Review y) {
if (x == null || y == null) throw new IllegalArgumentException(
"Reviews shouldn't be null!");

List<Difference> changes = new ArrayList<>();

compareReviewField("Title", x.getTitle(), y.getTitle(), changes);
compareReviewField("Username", x.getUsername(), y.getUsername(), changes);
compareReviewField("Updated on", x.getUpdated(), y.getUpdated(), changes);
compareReviewField("Rating", x.getRating(), y.getRating(), changes);

compareReviewField("Text", x.getText(), y.getText(), changes);
return changes;

Notice that we also removed a bug: by expressing the common logic in a generic
way, we can’t make copy&paste errors.

3.1 Summary

We have created a new abstraction that we have reused several times in order to:

o Write less code.
o Make it more readable (and maintainable).
o Avoid repetitions (which as we’ve seen are error-prone).

4 Second refactoring: Purity!

Let’s begin to use a more functional approach making our #diff () method a
pure function.

4.1 Pure functions

Ay = £(x) function is said to be pure when, quoting Wikipedia:

[...] both below statements about the function hold:

https://en.wikipedia.org/wiki/Pure_function

1. The function always evaluates the same result value given the
same argument value(s). The function result value cannot de-
pend on any hidden information or state that may change while
program execution proceeds or between different executions of
the program, nor can it depend on any external input from I/0
devices [...].

2. Evaluation of the result does not cause any semantically observ-
able side effect or output, such as mutation of mutable objects
or output to I/O devices [...] .

The result value need not depend on all (or any) of the argument
values. However, it must depend on nothing other than the argument
values. The function may return multiple result values and these
conditions must apply to all returned values for the function to be
considered pure. If an argument is call by reference, any parameter
mutation will alter the value of the argument outside the function,
which will render the function impure.

Summarizing, a function is pure when:

o It does not do any side-effect (printing things, talking over the network,
reading/writing files or a DB, etc).

e It produces a result, and the computation depends only on the input
parameters. For the same input, it always produces the same result.

o The input parameters are not modified (they are immutable).

Working with pure functions is easier because:

o They are easier to reason about: you don’t have to take into account
external dependencies, temporal couplings, global state, etc. For the same
reason, they are also much easier to test. We can have a very useful
property called referential transparency: “every exrpression e can be
substituted everywhere it occurs in the program p with the result of its
evaluation, without altering the meaning of p”'. This means that you can
reason algebrically about your program and do mechanical refactorings
with much more confidence?.

e We have composability at our disposal: if their types are compatible, pure
functions can be freely combined in a lot of ways. This is not possibile with
impure functions since there may be side-effects that must occur (or not)
in a certain sequence, or if some things must be done (or not) together.

Throughout this article we’ll use a simple notation® to express function signatures
and types declarations, which is much more concise (and expressive) than Java

code. For example:

addl :: Int -> Int

1Thanks to Rinar Bjarnason for this definition!
20f course this is especially true with statically-typed languages.
3This notation is valid Haskell code, surprise!

http://blog.higher-order.com
http://blog.higher-order.com/blog/2012/09/13/what-purity-is-and-isnt/
https://www.haskell.org/

This example denotes the signature of a function called add1, which takes a
value of type Int and returns a value of type Int. This is just the signature,
we're not interested in the implementation right now.

A function with two parameters can be expressed like this:
add :: Int -> Int -> Int

This signature reads like: “here we define a function called add that takes an Int
value, then another Int value, and finally computes another Int value”. There
is no ambiguity in what’s a parameter type and where is the return type since
every function has always only one return value, the last one.

Intuitively, that’s how to read this signatures. The correct way
however is this:

add :: Int -> (Int -> Int)

add is a one parameter function that returns another one parameter
function, that in this case will compute the result. In general, an n
parameters function is equivalent to a “chain” of n one parameter
functions, and you can go from one formulation to the other through
a technique called currying (and viceversa with the dual: uncurrying).
“Curried” functions are very powerful and useful, but you’ll see it
more and more as you explore functional programming and apply it.

Another example is the signature of our method #diff:

diff :: Review -> Review -> [Difference]

In this article we’re going to use a supporting library called Functional Java (FJ).
This library defines several very useful functional constructs, and in particular F
types to model pure* functions, that can be used to implement the examples

we’ve just seen:

addl :: F<Integer, Integer>
add :: F2<Integer, Integer, Integer>

4.1.1 Predicates
Predicates are a family of functions that have a specific signature:
a -> Boolean

This function is polymorphic since it’s defined on an input value of type a, which
is a type parameter. In other words, we can use that function with any type we
want: Strings, Ints, etc.

So, a predicate is a function that given a value of a certain type, returns true or
false. In FJ a predicate is represented by the type F<T, Boolean>.

4 As pure as possible, with Java you can’t have strong guarantees about purity.

https://en.wikipedia.org/wiki/Currying
http://www.functionaljava.org/

4.2 Higher-order functions

So called higher-order functions (HOF) are ordinary functions that can take
other functions as parameters and/or return a function as a result. This concept
gives us a great expressive power because this way behaviour can be treated
as data: passed around, constructed and modified (not only applied to some
values).

Code is data, data code,—that is all Ye know on earth, and all ye
need to know.

HOFs that requires other functions as parameters, permit to express function
application patterns which enables an higher abstraction level. This is hardly
a new concept: it’s a generalization of the Command Pattern (just easier and
more powerful) and it has been used in AWT since Java 1.

This is so useful and foundational that Java 8 introduced one of the most
far-reaching changes since its inception: lambda expressions. Conceptually, a
function can be seen as a class with a single method:

public interface F<A, B> {
B f(A a);
}

In fact, this is basically how Functional Java models them. With this library®
we can adopt a functional style even without first-class support of functions
(lambda expressions), but be warned that without them things tends to become
quite verbose and not very readable if overused. The TL;DR is: just use Java 8
if you can!

4.2.1 filter

As a first example of HOF we’re going to look at filter. Its signature is:
filter :: (a -> Bool) —-> [a] —> [a]

In short it is a function that applies a predicate (a -> Bool) to every element
of the sequence [a] (a list of values of generic type a), discarding all values that
does NOT satisfy it.

For example:

filter even [1, 2, 3, 4, 5, 6]
-- [2, 4, 6]

5There are others out there. For example: JavaSlang, TotallyLazy and fun4j. You could
also roll your own if you want to.

http://c2.com/cgi/wiki?DataAndCodeAreTheSameThing
https://sourcemaking.com/design_patterns/command
https://docs.oracle.com/javase/tutorial/uiswing/events/actionlistener.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
http://www.functionaljava.org/javadoc/4.4/functionaljava/fj/F.html
http://www.functionaljava.org/javadoc/4.4/functionaljava/fj/data/List.html#filter-fj.F-
http://javaslang.com/
http://totallylazy.com/
http://www.fun4j.org/

Here we have a function application that can be read like this: “apply to filter
the arguments even and [1, 2, 3, 4, 5, 6]"

e filter is our HOF.

e even is a predicate that requires an Int and returns true if it’s... even.

e [1, 2, 3, 4, 5, 6] is a literal representation of a list, in this case of
Int numbers.

The last line is the result, expressed as a comment.

4.2.2 map

map is another HOF with this signature:
map :: (a -> b) —> [a] -> [b]

In practice it applies a function (a -> b) to every element of the list [a],
producing a list of b values. Notice that a and b are type parameters® and can
be the same actual type.

For example:

map addl [1, 2, 3, 4, 5, 6]
- [2; 31 4: 5; 6; 7]

4.3 Maybe/Option

Maybe (which Functional Java calls Option<T> and Java 8 Optional<T>), is a
generic type that denotes that a value of a certain type can be absent. Another
way to see it is that Option<T> is a collection of values of type T, with an
additional constraint on its size s such as: 0 <= s <= 1. In other words, an
Option<T> is a “box” that can contain (or not) a value of type T.

Using Option instead of null” makes explicit statically and at the type system
level the fact that a value is optional: I can have it, or not. This way:

e It’s explicit: no more sifting through the API documentation to check if
it’s the case.

e No more forgotten null checks and resulting NullPointerExceptions at
runtime. The compiler can check them for you and doesn’t compile until
you manage both cases.

6Here, a is a “variable” that means “some type that we call a, we don’t care what it is but
only that in this signature when I say a I mean this type”.
“Which Tony Hoare considers his “billion dollar mistake”, rightfully so in my opinion.

http://www.functionaljava.org/javadoc/4.4/functionaljava/fj/data/List.html#map-fj.F-
http://www.functionaljava.org/javadoc/4.4/functionaljava/fj/data/Option.html
https://docs.oracle.com/javase/8/docs/api/java/util/Optional.html
http://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare

4.4 Unit

Unit can be thought as a synonym of void and means “nothing”. Pure functions
in which signature appear Unit are generally quite useless:

foo :: Int -> Unit
bar :: Unit -> Int

Remember that the evaluation of a pure function computes a value that can be
the result of some transformation or calculation based only on the values it’s
applied to. There is no other option: no DBs, no remote services, no IPC, no
files, nothing. Knowing this, we can say important things about those functions
even without looking at their implementations®:

e foo does nothing. It doesn’t compute any value, and being pure it cannot
do anything else.

e bar will always return the same, constant value. Again, being pure it can’t
take this value from anywhere and it can’t “come up” with one in any
other way (based on time or randomness for example). So it must return
a constant value.

4.5 In practice

To make our method #diff more “pure” means, first of all, that it shouldn’t
modify one of its arguments. Instead, it should only compute a value and directly
return it. Adding it to a list (or printing it to a log, or writing it into a database
table, etc. etc.) has to be done in a different place, at a different abstraction level.
Doing it in this way we gain a stronger separation of concerns and additional
flexibility: we can apply it to a wider spectrum of use-cases.

More specifically, it means moving from:

diff :: String -> a -> a -> [Difference] -> Unit
To:

diff :: String -> a -> a -> Maybe Difference
That is:

private static <T> Option<Difference> compareReviewField(String description,
T oldValue,
T newValue) {
if (!'0Objects.equals(oldValue, newValue)) return Option.some(
difference(description, Utils.formatValue(oldValue),
Utils.formatValue(newValue)));
else return Option.none();

}

8This ability to deduce the behaviour or the possible behaviours of a function looking only
at it’s signature is distinctive of statically-typed pure functions and it’s called Parametricity.

https://en.wikipedia.org/wiki/Separation_of_concerns
http://yowconference.com.au/slides/yowlambdajam2014/Morris-ParametricityTypesAreDocumentation.pdf

After doing this, we must also change the structure of our main method by
building a data transformation pipeline like this:

1. We create a list” of Option<Difference>.
2. Then filter the Optional values that actually contains a Difference value.
3. Finally, we map to every Option the function to extract the value it contains.

0Old Review 1
diff -
> Difference * filter |
Difference
New Review
fromSome j

isSome

map

public static List<Difference> diff(Review x, Review y) {
if (x == null || y == null) throw new IllegalArgumentException(

"Reviews shouldn't be null!");

Figure 1: 2rd refactoring, first functional pipeline

In code:

fj.data.List<Option<Difference>> changes = list(
compareReviewField("Title", x.getTitle(), y.getTitle()),
compareReviewField ("Username", x.getUsername(), y.getUsername()),
compareReviewField ("Updated on", x.getUpdated(), y.getUpdated()),
compareReviewField("Rating", x.getRating(), y.getRating()),
compareReviewField("Text", x.getText(), y.getText()));

return changes
.filter(Option.isSome_())
.map(Option.fromSome())
.toJavaList();

4.6 Summary

At this point we have changed #diff by making it more functional, and as
a consequence more flexible and reusable. We have also built a first data-
transformation pipeline which in the rest of this document we’re going to simplify
and make more clear and flexible.

9We're talking about FJ’s List type.

10

http://www.functionaljava.org/javadoc/4.4/functionaljava/fj/data/List.html

5 Third refactoring: SRP!

Let’s take a step back and try to understand what we are really trying to
accomplish with all this code: we have two reviews and we want to get back a
human-readable representation of all the data fields that are different between
those two. The typical use-case is obtaining a description of the differences
between two different versions of the same review at different points in time.

In practice, we want something like this:

diff :: Review -> Review -> [Difference]

To write this function we use another one, compareReviewField:
compareReviewField :: String -> a -> a -> Maybe Difference

Which has multiple responsibilities because it has to do very different things:

1. Check if the values of a specific field are different.
2. If they are, create a value of type Difference.

To follow the Single Responsibility Principle (SRP) and write more simple,
flexible and maintainable code, let’s separate this two responsibilities in two
separated functions and refactor the data transformation pipeline to work with
them. Conceptually we want:

1. Filtering: we want to filter the value pairs right away, before even talking
about the Difference type.

2. Creating Difference values: now we have only pairs with different values,
and we can just create Difference values from them without further
elaborations. It’s just a data transformation.

To talk more precisely about those “value pairs” (String, a, a) that we want
to filter and than transform in Difference values, let’s create a new type!

data Field a = Field String a a

This data declaration, as you may have been guessed, is parmetric:
this means that we can have Field values that can contain values
of any type (but both must be the same). For example: Field Int,
Field String, etc.

Therefore, we have to define this new type in Java. Since immutable values are
better:

11

http://en.wikipedia.org/wiki/Single_responsibility_principle
http://www.javapractices.com/topic/TopicAction.do;jsessionid=F033F4EAD96BABD4B7ECAF277FDE804A?Id=29

public class Field<T> {
private final String description;
private final T oldValue, newValue;

private Field(String description, T oldValue, T newValue) {
this.description = description;
this.oldValue = oldValue;
this.newValue = newValue;

3

public static <T> Field<T> field(String name, T oldValue, T newValue) {
Checks.notNull(name, oldValue, newValue);
return new Field<>(name, oldValue, newValue);

3

public String getDescription() {
return description;

}

public T getOldValue() {
return oldValue;

}

public T getNewValue() {
return newValue;

}

// Omisstis: #equals(), #hashCode() & #toString()

Now we can modify #compareReviewField by making this changes:

e Simplify: we can remove the equality check between the two field values,
extracting it in a different function.

o Change its name in #toDifference to better communicate its new (and
single) intent.

e Make it return a function that we can easily apply in our data transforma-
tion pipeline.

isFieldChanged :: Field a -> Boolean
toDifference :: Field a -> Difference

In Java:

private static F<Field<?>, Difference> toDifference() {
return f -> difference(f.getDescription(),
Utils.formatValue(f.get0ldValue()),
Utils.formatValue(f.getNewValue()));

12

We could express this method signature like this:

toDifference :: Unit -> (Field t -> Difference)
The equality check can be moved in a predicate, using the same strategy:

private static F<Field<?>, Boolean> isFieldChanged() {
return f -> !Objects.equals(f.get01ldValue(), f.getNewValue());
}

Finally, we can modify the main method:

public static List<Difference> diff(Review x, Review y) {
if (x == null || y == null) throw new IllegalArgumentException(
"Reviews shouldn't be null!");

fj.data.List<Field<?>> changes = list(
field("Title", x.getTitle(), y.getTitle()),
field("Username", x.getUsername(), y.getUsername()),
field("Updated on", x.getUpdated(), y.getUpdated()),
field("Rating", x.getRating(), y.getRating()),
field("Text", x.getText(), y.getText()));

return changes
.filter(isFieldChanged())
.map(toDifference())
.toJavaList();

5.1 Summary
With this refactoring we have:

e Simplified the pipeline.

e Separated different responsibilities in several fine-grained and lower-level
functions, which are easier to read, test and compose.

e Created a new concept, Field, to represent the value of the same field in
two different reviews.

6 Fourth Refactoring: Type classes!

Let’s take another look at #toDifference:

private static F<Field<?>, Difference> toDifference() {
return f -> difference(f.getDescription(),
Utils.formatValue(f.get0ldValue()),
Utils.formatValue(f.getNewValue()));

13

Its signature is:
toDifference :: Unit -> (Field a -> Difference)

Do you see something wrong in there? Let’s see input and output one next the
other to make it clearer:

data Field a = Field String a a
data Difference = Difference String String String

Basically, to transform a Field a value into a Difference one, the function
returned from #toDifference must be able to produce a String representation
of the values contained in that Field a without knowing what type a is. In
other words, it must be able to render into the form we need (a human-readable
String) arbitrary values.

However, how such a “rendering” is done right now? In our current implementa-
tion we use a static utility method [sic], that using the instanceof operator tries
to test for some known types. So, this utility method must know all possible
types that will be placed into Field values:

public class Utils {
public static String formatValue(Object value) {
if (value == null) return "none";
else if (value instanceof String) return (String) value;
else if (value instanceof Username) return ((Username) value).getName();
else if (value instanceof LocalDateTime)
return ((LocalDateTime) value).format(DateTimeFormatter.ISO_DATE_TIME);
else return value.toString();

This is... not the best way to do it. The rendering, done this way, is:

o Implicit

e Done dynamically through reflection

e Performed in a separated place that must be maintained in sync with the
code that creates Field values upstream.

Since we can place anything into a Field a value, if we create a Field with
a type not explicitly checked by an if [sic| in that static method (implicitly
tied to the diffing process), in the best case we’ll get unsuitable renderings (if
#toString() has been overridden):

SomeObject{propl=...,prop2=..., prop3=..., ...)
And in the worst case absolutely useless ones:

14

com.example.SomeObject@1b7ebdf8
In the end, what we want to use the values contained into a Field for?

o If they are null, we want the string “none”.
e If they are NOT null, we want a human-readable String representation
of them.

Instead of ignoring the actual type of the values contained in a Field a, and
invoking an “utility method” that uses instanceof to try to understand how to
produce a String from them, can we do better? Yes! We can define a subset of
types that offer a way to produce a String representation semantically correct
and useful for our purposes:

public interface Renderable {
String render();

}
We also need a “null” implementation, so let’s apply the Null Object pattern:

public class RenderableNone implements Renderable {
public static RenderableNone renderableNone() {
return new RenderableNone();

}

@0verride
public String render() {
return "none";
}
}

Now we can modify #toDifference to make it work only on Field<? extends
Renderable> values, so that we can take advantage from the #render () method
that they expose to produce the values we need:

private static F<Field<? extends Renderable>, Difference> toDifference() {
return (Field<? extends Renderable> f) -> {
Renderable oldValue = Option.fromNull(f.get0OldValue())
.orSome (renderableNone()) ;
Renderable newValue = Option.fromNull(f.getNewValue())
.orSome (renderableNone());
return difference(f.getDescription(), oldValue.render(),
newValue.render());
};
}

Finally, we need to change #diff to make this constraint explicit:

15

https://sourcemaking.com/design_patterns/null_object

public static List<Difference> diff(Review x, Review y) {
if (x == null || y == null) throw new IllegalArgumentException(
"Reviews shouldn't be null!");

fj.data.List<Field<? extends Renderable>> changes = list(
field("Title", x.getTitle(), y.getTitle()),
field("Username", x.getUsername(), y.getUsername()),
field("Updated on", x.getUpdated(), y.getUpdated()),
field("Rating", x.getRating(), y.getRating()),
field("Text", x.getText(), y.getText()));

return changes
.filter(isFieldChanged())
.map(toDifference())
.toJavaList();

But now the code doesn’t compile since we try to create Field values with
standard Java types like String (“Title” for example) and LocalDateTime
(“Updated on” in this case) that don’t implement our new Renderable interface
(and in Java we can’t make them implement it).

The thing we are trying to accomplish in programming languages with a more
advanced type system can be done with type classes. They have many advantages,
among the others: we can make an arbitrary type (even the ones that are out of
our control) a member of a type class by writing type class instances (not to be
confused with class instances). For example we could make LocalDateTime a
member of Renderable:

class Renderable a where
render :: a —> String

instance Renderable LocalDateTime where
render d = format ISO_DATE_TIME d

In a simplistic way, you could think about type classes as interfaces and type
classes instances as interface implementations for arbitrary types.

However, in Java this is not possible so we are forced to create some adapters:

public class RenderableString implements Renderable {
private final String value;

private RenderableString(String value) {this.value = value;}
public static RenderableString renderableString(String value) {
return value != null ? new RenderableString(value) : null;

}

Q@0verride

16

http://en.wikipedia.org/wiki/Type_class
https://sourcemaking.com/design_patterns/adapter

public String render() {
return value;

3

// Omissis: #equals() & #hashCode() & #toString()
}

public class RenderableTime implements Renderable {
private final LocalDateTime value;

private RenderableTime(LocalDateTime value) {this.value = value;}

public static RenderableTime renderableTime(LocalDateTime value) {
return value '= null ? new RenderableTime(value) : null;

3

@0verride
public String render() {

return value.format (ISO_DATE_TIME);
}

// Omisstis: #equals() & #hashCode() & #toString()

We need to create adapters only for types out of our control. Since
we own Username and Rating, we can make them directly implement
Renderable.

In this way, we can fix #diff and #isFieldChanged to obtain:

public static List<Difference> diff(Review x, Review y) {
if (x == null || y == null) throw new IllegalArgumentException(
"Reviews shouldn't be null!");

fj.data.List<Field<? extends Renderable>> changes = list(
field("Title", renderableString(x.getTitle()),
renderableString(y.getTitle())),
field("Username", x.getUsername(), y.getUsername()),
field("Updated on", renderableTime(x.getUpdated()),
renderableTime(y.getUpdated())),
field("Rating", x.getRating(), y.getRating()),
field("Text", renderableString(x.getText()),
renderableString(y.getText())));

return changes
.filter(isFieldChanged())
.map (toDifference())
.toJavalist();

17

6.1 Summary

With this refactoring we have further generalized the mechanism, moving the
responsibility of rendering a human-readable representation of field values near
the definition of the values themselves. And all of this by also making explicit
this constraint statically, which now is verifiable by the compiler (you don’t
need to remember to modify two unrelated places anymore).

7 Conclusions
We started with code:

e Extremely procedural

o Full of repetitions

« Difficult to read and maintain

o With multiple responsibilities mixed together
e With implicit dependencies

And we refactored it to code which is (IMHO):

o Concise (or as concise as possible)

e Simple

e With a clear intent

e Flexible

e Composable

o With explicit and statically verifiable dependencies and constraints

All this through a series of refactorings that took us toward a functional design,
by building a data transformation pipeline by composing pure functions that
works on immutable values. Every function is as simple as possible (following
the SRP), which makes comprehension, testing and reuse easier.

This is just an example, I don’t claim it is the best possible design'?. But if you
have come this far, I hope it has been a useful and interesting journey and that
I’ve been able to give you taste of what FP is all about. If you are interested
and want to know more, here are some resources:

e My blog

e Book: Functional Programming in Java by Pierre-Yves Saumont

e Functional Thinking by Neal Ford

e Book: Java 8 Lambdas by Richard Warburton

e Book: Haskell Programming by Christopher Allen and Julie Moronuki
e How to learn Haskell: free resources to learn Haskell

10We could have used Show for example

18

https://github.com/matthiasn/talk-transcripts/blob/master/Hickey_Rich/SimpleMadeEasy.md
http://lambda-land.com/
https://www.manning.com/books/functional-programming-in-java
http://nealford.com/functionalthinking.html
http://shop.oreilly.com/product/0636920030713.do
http://haskellbook.com/
https://github.com/bitemyapp/learnhaskell
http://www.functionaljava.org/javadoc/4.4/functionaljava/fj/Show.html

8 Changelog

8.1 Version 1 (27 December 2015)

First version.

9 License

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 In-
ternational License. To view a copy of this license, visit http://creativecommons.
org/licenses/by-sa/4.0/ or send a letter to Creative Commons, PO Box 1866,
Mountain View, CA 94042, USA.

19

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

	Abstract
	Context
	First refactoring: DRY!
	Summary

	Second refactoring: Purity!
	Pure functions
	Predicates

	Higher-order functions
	filter
	map

	Maybe/Option
	Unit
	In practice
	Summary

	Third refactoring: SRP!
	Summary

	Fourth Refactoring: Type classes!
	Summary

	Conclusions
	Changelog
	Version 1 (27 December 2015)

	License

